Machine Learning in Hybrid Hierarchical and Partial-Order Planners for Manufacturing Domains
نویسندگان
چکیده
The application of AI planning techniques to manufacturing systems is being widely deployed for all the tasks involved in the process, from product design to production planning and control. One of these problems is the automatic generation of control sequences for the entire manufacturing system in such a way that final plans can be directly used as the sequential control programs which drive the operation of manufacturing systems. Hybis is a hierarchical and nonlinear planner whose goal is to obtain partially ordered plans at such a level of detail that they can be used as sequential control programs for manufacturing systems. Currently, those sequential control programs are being generated by hand using modelling tools. This document describes a work whose aim is to improve the efficiency of solving problems with Hybis by using machine learning techniques. It implements a deductive learning method that is able to automatically acquire control knowledge (heuristics) by generating bounded explanations of the problem solving episodes. The learning approach builds on Hamlet, a system that learns control knowledge in the form of control rules.
منابع مشابه
A Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملA Batch-wise ATP Procedure in Hybrid Make-to-Order/Make-to-Stock Manufacturing Environment
Satisfying customer demand necessitates manufacturers understanding the importance of Available-To-Promise (ATP). It directly links available resources to customer orders and has significant impact on overall performance of a supply chain. In this paper, an improvement of the batch-mode ATP function in which the partial fulfillment of the orders is available will be proposed. In other words, in...
متن کاملBridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Artificial Intelligence
دوره 19 شماره
صفحات -
تاریخ انتشار 2005